Transformations of Discrete Closure Systems
نویسندگان
چکیده
Discrete systems such as sets, monoids, groups are familiar categories. The internal structure of the latter two is defined by an algebraic operator. In this paper we concentrate on discrete systems that are characterized by unary operators; these include choice operators σ, encountered in economics and social theory, and closure operators φ, encountered in discrete geometry and data mining. Because, for many arbitrary operators α, it is easy to induce a closure structure on the base set, closure operators play a central role in discrete systems. Our primary interest is in functions f that map power sets 2U into power sets 2U ′ , which are called transformations. Functions over continuous domains are usually characterized in terms of open sets. When the domains are discrete, closed sets seem more appropriate. In particular, we consider monotone transformations which are “continuous”, or “closed”. These can be used to establish criteria for asserting that “the closure of a transformed image under f is equal to the transformed image of the closure”. Finally, we show that the categories MCont and MClo of closure systems with morphisms given by the monotone continuous transformations and monotone closed transformations respectively have concrete direct products. And the supercategory Clo of MClo whose morphisms are just the closed transformations is shown to be cartesian closed.
منابع مشابه
Transformations of Antimatroid Closure Spaces
Investigation of the transformations of vector spaces, whose most abstract formulations are called matroids, is basic in mathematics; but transformations of discrete spaces have received relatively little attention. This paper develops the concept of transformations of discrete spaces in the context of antimatroid closure spaces. The nature of these transformations are quite diierent from those...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملAddendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour
In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کامل